Toán lớp 12

Khảo sát hàm số y=(x+3)/(x+1)

1107

Bài toán: Khảo sát hàm số $ \displaystyle y=\dfrac{{x+3}}{{x+1}}$

Giải:

Tập xác định: $D=\mathbb{R}\backslash \{-1\}$

Ta có: $ y\prime=\dfrac {-2}{(x+1)^2}<0 \forall x \in D \Rightarrow$ hàm số nghịch biến trên các khoảng $(-\infty;-1)$ và $(-1;+\infty)$

Giới hạn, tiệm cận:

$\lim\limits_{x\to +\infty } y=\lim\limits_{x\to -\infty } y=1\Rightarrow y=1$ là tiệm cận ngang của đồ thị hàm số.

$\lim\limits_{x\to-1^+} y=\lim\limits_{x\to -1^-} y=+\infty \Rightarrow x=-1$ là tiệm cận đứng của đồ thị hàm số.

Bảng biến thiên:

Khảo sát hàm số y=(x+3)/(x+1)

0 ( 0 bình chọn )

Bài Toán
https://baitoan.com
Baitoan.com chia sẻ các bài toán dành cho lứa tuổi mầm non, Tiểu học (cấp 1), Trung học cơ sở (THCS), Trung học phổ thông (THPT) và những bài toán khác.
Ý kiến bạn đọc (0)

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Bài cùng chuyên mục
Bài viết mới
Xem thêm