Toán lớp 9

Giải bài toán tìm max min thỏa mãn điều kiện cho trước

106

Bài toán: Cho $x, y \in \mathbb{Q}$ thỏa mãn $21 x^2-36 x y+44 y^2 \leq 27$. Tìm max min của $A=x+2 y$.

Giải:

Vì $A = x + 2y$ nên $2y = A – x$. Ta viết lại biểu thức ban đầu:

$\begin{array}{c} 21{x^2} – 18x\left( {A – x} \right) + 11{\left( {A – x} \right)^2} \le 27\\ \Leftrightarrow 21{x^2} – 18Ax + 18{x^2} + 11{A^2} – 22Ax + 11{x^2} \le 27\\ \Leftrightarrow 50{x^2} – 40Ax + 11{A^2} – 27 \le 0 \quad (1) \end{array}$

Coi biểu thức (1) là một tam thức bậc 2 theo x. (1) có hệ số cao nhất dương, nên (1) có nghiệm khi và chỉ khi biệt thức $\Delta_x \ge 0$, tức là:

$\begin{array}{c} {\left( {40A} \right)^2} – 4 \times 50 \times \left( {11{A^2} – 27} \right) \ge 0\\ \Leftrightarrow {A^2} \le \dfrac{{5400}}{{600}} = 9\\ \Leftrightarrow – 3 \le A \le 3 \end{array}$

Khi $A=3$ thì $x=y=\dfrac{6}{5}$. Khi $A=-3$ thì $x=y=\dfrac{-6}{5}$. Cả hai điểm rơi đều hữu tỷ nên thỏa đề.

Vậy $\min A=-3$ và $\max A=3$.

0 ( 0 bình chọn )

Ý kiến bạn đọc (0)

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Bài liên quan

Kết nối với chúng tôi

Nhiều người đọc

Chuyên mục

Bài viết mới
Xem thêm